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Summary
We measure objects in relation to reference objects by

parameterizing measures such as intersection count,

area and inner and outer contour length by the dis-

tance r from the reference objects to the objects of

interest. This expands the notion of these geometric

measures giving a more fine-grained interpretation

of the shape of the objects and solves issues such

as when the domain is bounded by an observation

window. One interesting question that arises from

this technique is the inverse problem. Is it possible

to take the measures and recreate the object, if so, is

the object unique and if not, what is the family of

shapes under which the measures are invariant? We

here tackle the initial step towards a better under-

standing of the problem.

The Forward Problem

Let X denote the objects of interest and Y the refer-

ence objects. We then define the r parameterization

by the family Yr of objects (observed domain) by

Yr = {α ∈ Rd | inf
y∈Y

d(α, y) ≤ r} . (1)

Here d(α, y) denotes the distance between α and y,

typically the Euclidean distance. The points in X
having at most distance r from Y is thus the inter-

section X ∩ Yr. We measure X ∩ Yr by a measure

µ(X, Yr). In all our applications, µ has the form

µε,ε′(X, Yr) = Hd−ε−ε′(∂εX ∩ ∂ε′Yr) , (2)

whereHk denotes the n-dimensional Hausdorff mea-

sure, ε, ε′ ∈ {0, 1}. The interpretation of Hk and

µε,ε′(X, Yr) in 2D is shown in the below table.

∂εX ∩ ∂ε′Yr Interpretation of µε,ε′(X, Yr)

X ∩Yr Area of cut

X ∩ ∂Yr Boundary length of cut in interior of X
∂X ∩Yr Boundary length of cut in boundary of X

∂X ∩ ∂Yr Point count in boundary intersection

Figure 1: An example where we measure a set of circle objects using
the squares as reference. Contour lines indicate the distance from the
reference object. For each distance r, we measure the part of the circles
within distance r to the squares. The measures are intersection counts
(orange triangles), object contour length (blue), intersection contour
length (red) and area (hatched region).

Figure 2: Example measurement curves for simple shapes

A Simpler Case
For this work we will constrain ourselves to the situ-

ation where the reference object is the line x = 0 and

the objects of interest are have shapes which can be

described by two functions p(x) and q(x) which to-

gether make the contour of the object. Note that if

we restrict ourselves to object only on the positive

side of x = 0, we get r = x as the distance contours.

Using the above simplification and letting p(x) ≥
q(x), ∀x ∈ R+, we can reformulate the measures as

µ00(r) =
∫ r

0
p(x)− q(x) dx (3)

µ01(r) = p(r)− q(r) (4)

µ10(r) =
∫ r

0

√
1 +

(
dp
dx

)2
+

√
1 +

(
dq
dx

)2
dx (5)

µ11(r) =

0 p(r) = q(r)

2 otherwise
(6)

An Optimization Approach
Letting ∆µmn(i) = µmn(xi+1)−µmn(xi) we formulate

the following energy terms

e00 =
N

∑
i=1

(∫ xi+1

xi

pi− qi dx− ∆µ00(xi)

)2
(7)

e01 =
N

∑
i=1

(pi− qi− µ01)
2 (8)

e10 =
N

∑
i=1

∫ xi+1

xi
∑

f∈{p,q}

√
1 +

(
d fi
dx

)2
− ∆µ10(xi)

2

(9)
We further define a smoothness constraint and a cur-

vature minimization terms

esmooth =
N−1

∑
i=1

(
dpi
dx

(xi+1)−
dpi+1

dx
(xi+1)

)2
(10)

+
N−1

∑
i=1

(
dqi
dx

(xi+1)−
dqi+1

dx
(xi+1)

)2
(11)

ecurve = ∑
f∈{p,q}

∫ d2 fi
dx2

(
1 +

(
d fi
dx

)2
)−3

2

dx


2

(12)

Results
Here we show target example curves corresponding

to circle and ellipse. We generated the shape relation

measures from these shapes as well as a square.

(a) Circle target (b) Ellipse target

Figure 3: Example of target objects which we want to reconstruct.

Using BFGS implemented in scipy.optimize.minimize

we minimize the energy terms given the measures.

For approximation functions p, q we use 3rd degree

splines. The most successful results can be seen be-

low.

(a) Circle reconstruction (b) Ellipse reconstruction (c) Square reconstruction

Figure 4: Reconstructed objects.

Discussion
While the simplification yields an naively easy way

to revert the process to and retrieve the shapes again,

we are both far from the goal of inverting the mea-

surements on the full Hausdorff measure in n-d at

this point and the optimization approach is currently

slow and prone to missing the target, possibly due

to local minima in the energy landscape. Further-

more, the following figure shows examples of how

unconstrained the problem is yet since both shapes

will have equal measure and are thus both solutions

to the problem.

Figure 5: Example of a situation with both desired and less desired
equivalence

Identifying these cases yields valuable information

about measures themselves.

Open Questions
– Is there a way to analytically retrieve the objects

or a parameterized family of objects, that is, the

equivalence class under the set of measures?

– What measure could we add that would constrain

the object to be have unique shape under a given

measure?

– How should we approach the problem if the refer-

ence object is not a line, but a point or an object of

arbitrary shape?


