
UNIVERSITY OF COPENHAGEN
DEPARTMENT OF COMPUTER SCIENCE

Animation-Based Soft Robot Control

Max Kragballe Nielsen
Abstract
Designing and implementing robot control programs is presently reserved for experts in fields such as
Computer Science and Engineering. However, as robots are becoming an ever-growing part of our
society, accessibility must increase. We propose an animation-based tool for crafting robot control
programs, where a user can relay intent through key-frame drawings/renders using popular sculpting
tools such as Blender and Maya.

Introduction
In recent years, soft robotics has gained traction due to a rise in
the availability of personal manufacturing.
Soft robots are well-suited for completing highly variable tasks,
such as grasping, but as a consequence of their highly flexible
frames, designing control programs is non-trivial.

Helping users design control programs has been proposed
previously as in [1], where physical simulations were leveraged
such that the design phase would only require simple
instructions, like moving a point on the character, or specifying
an angular momentum. In [2], animated plushies were designed
to reenact idealized user-authored motions. Similarly to [1], a
physical simulation was performed to ensure that the resulting
control programs were realizable.

Range of motion.
A cable-driven soft robot actuated using stepper motors.

In our work, we aim to create an interface similar to the one
presented in [2], but instead of requiring mesh information -
such as connectivity and positions - we apply differentiable
rendering to extract necessary information from user-provided
keyframes. This provides an advantage, as input mesh quality
becomes less of an issue.

Our approach is suited for problems such as,
● learning inverse kinematics
● aiding in the design of physically realistic animations
and we aim to extend the current work to solve problems such
as object manipulation, where a user animates only how the
object should behave.

Inverse Problem Statement

Given a user-authored trajectory,

we wish to find the control signals,

such that,

where is the trajectory resulting from applying the control
signals to our soft robot.
To ensure that our control signals are realizable, the trajectory
is generated through physical simulation.

Method
To process animated images directly, we make use of the DIB-R
renderer presented in [3], which allows for gradients to be
analytically computed for all pixels in an image. This enables us
to perform gradient-based optimization over the control
parameters, providing a speed-up in terms of convergence.

A common problem in soft robotics is that simulations diverge
from reality, as a consequence of incorrect simulation
parameter. This create a gap between simulations and the real
world - the sim-2-real gap - that often leads to algorithms that
work well in simulation, but fail in reality. To reduce this
divergence, we use a differentiable simulator constructed
similarly to the ones presented in [4], [5], which allows for faster
identification of correct simulation parameters.

Example trajectory input.
A rigid sphere being moved around during a
user-authored animation.

A user-authored soft robot trajectory, for which we want to learn corresponding control signals.

Future Work and Limitations
Currently, we are able to optimize object positions,
orientations and velocities in simple physical systems.
However, moving onwards to more difficult tasks such as
grasping and locomotion we need to further develop our
model, as well as our trajectory loss function (which is
currently the loss function described for 3D object prediction in
[3]).
Our robots are controlled through arduino-powered drivers,
but our simulations assume that we have a system with no
latency, as well as motors capable of a wide range of speeds.
In reality, this is a pretty poor model of the motors, which has
meant that we can only hope to transfer skills from tasks
where speed is non-essential, such as moving an end-effector
to a desired position.

The workflow of our model.
The simulator generates a set of vertex positions for each
time dependent control signal. The differentiable renderer
then renders the model and computes positional derivatives
using the user-authored input trajectory.
These derivatives are then used to minimize the trajectory
loss by tuning the control parameters.

References
[1] Soft Body Locomotion, Jie Tan, Greg Turk, and C. Karen
Liu, CM Trans. Graph. 31 4, Article 26 (July 2012)
[2] Interactive design of animated plushies, James M. Bern,
Kai-Hung Chang, and Stelian Coros. ACM Trans. Graph. 36,
4, Article 80 (July 2017).
[3] Learning to Predict 3D Objects with an
Interpolation-based Differentiable Renderer, Wenzheng Chen,
Jun Gao, Huan Ling, Edward J. Smith. Jaakko Lehtinen, Alec
Jacobson, and Sanja Fidler, NeurIPS, 2019
[4] Augmenting Differentiable Simulators with Neural Networks
to Close the Sim2Real Gap, Heiden, E., Millard, D., Coumans,
E., & Sukhatme, G. S. (2020). arXiv preprint
arXiv:2007.06045.
[5] Interactive differentiable simulation, Heiden, E., Millard, D.,
Zhang, H., & Sukhatme, G. S. (2019). arXiv preprint
arXiv:1905.10706.A pneumatically actuated

robot during actuation.

