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Abstract
Designing and implementing robot control programs is presently reserved for experts in fields such as 
Computer Science and Engineering. However, as robots are becoming an ever-growing part of our 
society, accessibility must increase. We propose an animation-based tool for crafting robot control 
programs, where a user can relay intent through key-frame drawings/renders using popular sculpting 
tools such as Blender and Maya.

Introduction
In recent years, soft robotics has gained traction due to a rise in 
the availability of personal manufacturing.
Soft robots are well-suited for completing highly variable tasks, 
such as grasping, but as a consequence of their highly flexible 
frames, designing control programs is non-trivial.

Helping users design control programs has been proposed 
previously as in [1], where physical simulations were leveraged 
such that the design phase would only require simple 
instructions, like moving a point on the character, or specifying 
an angular momentum. In [2], animated plushies were designed 
to reenact idealized user-authored motions. Similarly to [1], a 
physical simulation was performed to ensure that the resulting 
control programs were realizable.

Range of motion.
A cable-driven soft robot actuated using stepper motors.

In our work, we aim to create an interface similar to the one 
presented in [2], but instead of requiring mesh information - 
such as connectivity and positions - we apply differentiable 
rendering to extract necessary information from user-provided 
keyframes. This provides an advantage, as input mesh quality 
becomes less of an issue.

Our approach is suited for problems such as,
● learning inverse kinematics
● aiding in the design of physically realistic animations
and we aim to extend the current work to solve problems such 
as object manipulation, where a user animates only how the 
object should behave.

Inverse Problem Statement

Given a user-authored trajectory,

we wish to find the control signals,

such that,

where           is the trajectory resulting from applying the control 
signals     to our soft robot.
To ensure that our control signals are realizable, the trajectory            
is generated through physical simulation.

Method
To process animated images directly, we make use of the DIB-R 
renderer presented in [3], which allows for gradients to be 
analytically computed for all pixels in an image. This enables us 
to perform gradient-based optimization over the control 
parameters, providing a speed-up in terms of convergence.

A common problem in soft robotics is that simulations diverge 
from reality, as a consequence of incorrect simulation 
parameter. This create a gap between simulations and the real 
world - the sim-2-real gap - that often leads to algorithms that 
work well in simulation, but fail in reality. To reduce this 
divergence, we use a differentiable simulator constructed 
similarly to the ones presented in [4], [5], which allows for faster 
identification of correct simulation parameters.

Example trajectory input.
A rigid sphere being moved around during a 
user-authored animation.

A user-authored soft robot trajectory, for which we want to learn corresponding control signals. 

Future Work and Limitations
Currently, we are able to optimize object positions, 
orientations and velocities in simple physical systems. 
However, moving onwards to more difficult tasks such as 
grasping and locomotion we need to further develop our 
model, as well as our trajectory loss function (which is 
currently the loss function described for 3D object prediction in 
[3]).
Our robots are controlled through arduino-powered drivers, 
but our simulations assume that we have a system with no 
latency, as well as motors capable of a wide range of speeds. 
In reality, this is a pretty poor model of the motors, which has 
meant that we can only hope to transfer skills from tasks 
where speed is non-essential, such as moving an end-effector 
to a desired position.

The workflow of our model.
The simulator generates a set of vertex positions for each 
time dependent control signal. The differentiable renderer 
then renders the model and computes positional derivatives 
using the user-authored input trajectory.
These derivatives are then used to minimize the trajectory 
loss by tuning the control parameters.
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