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Summary

– We propose a method for simulating diffusion bridges on general Riemannian

manifolds, from p to v, over the time interval [0, T].

– The method relies on a guiding scheme dependent on the gradient of the squared

distance function, ∇xd(x, p)2/2. The bridge process is termed radial bridge.

– The radial bridge is applied to estimate the diffusion mean (Hansen et al. 2020) on

the sphere, S2 (see Fig. 5).

Simulation of Radial Bridges

(a) M = S2. Four simulated paths of a diffusion
bridge process from the north pole (red point) to
the south pole (black point).

(b) M = T2. Four sample paths from the simula-
tion scheme of the radial bridge, Xt, from x (red
point) to v (black point).

(c)M = S×R. An example of four sample paths
of the radial bridge conditioned to arrive at a point
in the cut-locus, Cut(x), of the initial point x.

(d) M = SO(3). The figure illustrates a sample
path from the radial bridge on the rotation group,
by showing its left action on a basis of R3. The black
arrows indicate the conditioned point.

Figure 1: The figures show how our simulation scheme applies to different manifolds. The method works in
particular across the cut-locus.

Riemannian Manifolds
– LetM denote a d-dimensional Riemannian manifold, i.e. a smooth topological struc-

ture endowed with a smoothly varying inner product on the tangent space, TpM.

– The inverse of the exponential map expp : TpM → M defines, locally, a distance

function onM by

d(x, p) := ‖exp−1
p (x)‖.

– The gradient of the distance function, ∇xd(x, p), is called radial vector. The radial

vector field is not smooth on the cut-locus (see Fig. 2).

(a) Radial vector field on the
cylinder, related to the radial
bridge, Xt, centered at the point
XT = v.

(b) Radial vector field on the
torus, related to the radial
bridge, Xt, centered at the point
XT = v.

(c) Squared radial vector field
on the 2-sphere centered at the
south pole.

Figure 2: The figures illustrate the underlying (modified) radial vector field of the cylinder, the torus, and the
sphere. The vector field act as a pulling term for the radial bridge process.

Frame Bundle Stochastics
– The orthonormal frame bundle is the disjoint union

OM :=
⊔

p∈M
OMp = {u : Rd → Tπ(u)M}

of fibres over p ∈ M, where each fibre is the collection of orthonormal basis vec-

tors of the tangent space TpM (see Fig. 3).

– The differential, π∗, of the projection π : OM → M is an isomorphism when

restricted to the horizontal part, HuOM, of the tangent space TuOM :=

VuOM⊕HuOM. The horizontal tangent space have globally defined vector fields

Hi(u), i = 1, .., d.
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Figure 3: Illustration of the frame bundle overM.

– Fixing u0 ∈ OM, there is a one-to-one correspondance between stochastic pro-

cesses on Rd,M, and OM. The solution to the stochastic differential equation

dUt = ∑
i

Hi(Ut) ◦ dZi
t, Xt = π(Ut)

provides the one-to-one relation between Z, X, and U.

Radial Bridge Process
– The radial bridge solves the SDE, where d̃(u, v) = d(π(u), v),

dUt = ∑
i

Hi(Ut) ◦
(

dZi
t + U−1

t

(
π∗∇Hd̃(Ut, v)2

2(T − t)

)i

dt
)

, Xt = π(Ut).

– This solution converges to the desired end-point at time T and is equivalent to the

desired diffusion on [0, T).

– The non-smoothness of the radial vector field on the cut-locus implies a disconti-

nuity of the guiding term, as seen from Fig. 4.
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Figure 4: One sample path of the radial bridge, Xt, from x to v, with corresponding pulling term. The drift changes
sign when crossing cut-locus.

Application to Maximum Likelihood Estimation

(a) Sampled data points on S2. (b) Convergence to the diffusion
mean (blue point) on S2 from ini-
tial guess (black point).

(c) Convergence of the likeli-
hood.

Figure 5: Bridge simulation can be used for density estimation. To that effect it serves as a method for estimating
the diffusion mean on S2.
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