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Abstract

Object segmentation and track-
Ing In 4D (3D+time) images IS
challenging, especially when
objects split/merge. Current
methods do not handle splits/
merges or are Infeasible for
large data sets. We propose to
fit a hypersurface Iin the 4D
domain to the evolving object
boundaries. This gives a com-
pact representation of the ob-
jects at all times, and allows
objects to split/merge.
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Fig. 1: Basic idea of the method for a
3D (2D+time) example. Two disks
grow over time until they merge,
which forms a single conn. comp. In
3D. Instead of segmenting in each 2D
slice (bot. left), our method segments
the 3D conn. comp. with a single
mesh (bot. right).
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Fig. 2: General method pipeline.
Left: outline of object in the last slice
IS detected. Middle: object interior is
tetrahedralized. Right: Tet. mesh is
deformed to segment conn. comp.
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Fig. 3. Extracting 3D segmentations.
After fitting, a 3D segmentation can
be extracted as a triangle mesh
giving the object boundary. This is
done by intersecting each tet. with an
Xyz-hyperplane.

Application to Evolving Metal Foam
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Fig. 4. 3D renderings of data with tet. mesh cross sections overlaid on image data. Columns 1-4
show xyz-slices and column 5 shows xyt-slice. Note that all columns show a cross section of the
same tet. mesh.

Numerical Experiments
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Fig. 5: Top: 3D renderings of artificial data with tet. mesh cross sections overlaid on image data for
different noise levels. Bot. right.: mean distance to true object boundary over time. Bot. left: max
distance to true object boundary over time. Bot: Gray regions mark object merges.

Comparisons

Tab. 1: Methods used for comparison
w.r.t. segmentation accuracy, run
time, and memory use.

Method Full name

3D MRF 6-connected Markov random field

4D MRF 8-connected Markov random field

GC/2 Surface fitting with graph cut (A=2)
GC/8 Surface fitting with graph cut (A=8)
Ours Deformable hypersurface

Ours (s.t.) Deformable hypersurface (small tets.)
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Fig. 6: Mean distance to true object
boundary over time for all methods.
Gray regions mark object merges.
Top: std. = 25. Bot: std. = 100.

Tab. 2: Resource use for all methods
at the two noise levels. Mem. use
does not Include the size of the
Image (200 MB).

Method Time [S] Mem. use (peak / seg.)

std. = 25
3D MRF 53 428.0 MB / 200 MB
4D MRF 115 57,500.0 MB / 200 MB
GC/2 49 486 MB / 9.2 MB
GC/8 50 47.3MB / 9.2 MB
Ours 12 849MB / 2.3MB
Ours (s.t.) 149 2709 MB / 5.1 MB

std. =100
3D MRF 65 421.8 MB / 200 MB
4D MRF 238 57,500.0 MB / 200 MB
GC/2 62 469 MB / 9.2MB
GC/8 o7 46.9MB / 9.2 MB
Ours 90 137.7MB / 3.5MB




