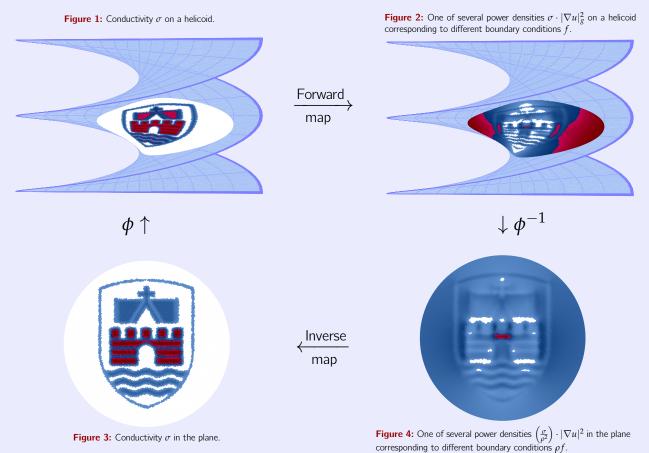


Acousto-electric tomography on Riemannian manifolds

Bjørn Jensen, Kim Knudsen, Steen Markvorsen, and Hjørdis Schlüter

Technical University of Denmark. Contact: hjsc@dtu.dk



1 Introduction

- Acousto-electric tomography (AET) is an imaging modality used to reconstruct the electrical conductivity σ_i^i of an object
- The conductivity enters the model for the electric potential in the object, which on a 2D geometry (M^2, g) is formulated as the BVP:

$$\begin{cases} \Delta_g^{\sigma} u = 0 & \text{in } \Omega, \\ g(\sigma(\nabla_g u), n_g) = f & \text{on } \partial \Omega \end{cases}$$
(1)

with conductivity σ , potential u, outward unit normal n_g , domain $\Omega \subset M^2$ and using the notation $\Delta_g^{\sigma} u = \operatorname{div}_g \left(\sigma(\nabla_g(u)) \right)$.

• Inverse problem: Reconstruct the unknown anisotropic conductivity σ in Ω from several power densities $g(\sigma(\nabla_g u), \nabla_g u)$ corresponding to different boundary conditions f on $\partial\Omega$

2 A step towards the general setting

• We express the PDE in (1) in general coordinates:

$$\begin{split} = \Delta_g^{\sigma} u &= \sum_{mij} \left(\frac{\partial}{\partial x^i} \sigma_j^i \right) \cdot g^{jm} \cdot \frac{\partial u}{\partial x^m} \\ &+ \sum_{mij} \sigma_j^i \cdot \left(\frac{\partial}{\partial x^i} g^{jm} \right) \cdot \frac{\partial u}{\partial x^m} \\ &+ \sum_{mij} \sigma_j^i \cdot g^{jm} \cdot \frac{\partial^2 u}{\partial x^i \partial x^m} \\ &+ \sum_{mii} \Gamma_{ki}^k \cdot \sigma_j^i \cdot g^{jm} \cdot \frac{\partial u}{\partial x^m} \end{split}$$

3 A simple illustration

0 -

We consider an isotropic conductivity σ on a helicoid (M^2, g) , which is conformally represented in the plane with $g = \rho^2 \cdot E$. Specifically, $\Omega \subset M^2$ is parameterized by the map $\phi(x^1, x^2) = (\sinh x^1 \sin x^2, -\sinh x^1 \cos x^2, x^2)$, so that $\rho^2 = \cosh^2(x^1)$ • On a conformal geometry with isotropic conductivity $\sigma=s\cdot E$ the PDE reduces to:

$$\Delta_g^{\sigma} u = g(\nabla_g u, \nabla_g s) + s \cdot \Delta_g u$$
$$= \frac{1}{\rho^2} \cdot \Delta_g^{\sigma} u,$$

with $g_E = E$. Hence $\Delta_g^{\sigma} u = 0 \Leftrightarrow \Delta_{g_E}^{\sigma} u = 0$.

- In the plane, the boundary condition and power densities formulate to $n \cdot \sigma \nabla u = \rho f$ and $\left(\frac{\sigma}{\rho^2}\right) \cdot |\nabla u|^2$
- The reconstruction problem on the helicoid can therefore easily be addressed and handled in its planar, conformal representation

4 Current and future work

- We are currently working on anisotropic conductivities on more general 2D geometries
- Future work: Higher dimensions